Module for material handling withing the FE context.
Up to now, only Hyperelastic materials are implemented. Hyperelastic Materials are Materials, where the constitutive law can be expressed such, that the second Piola-Kirchhoff stress tensor S is a function of the Green-Lagrange strain tensor E. This computation is carried out in this module.
amfe.material.
HyperelasticMaterial
[source]¶Bases: object
Base class for hyperelastic material.
S_Sv_and_C
(E)[source]¶Compute 2nd Piola Kirchhoff stress tensor in matrix form and voigt notation as well as material tangent modulus.
Parameters: | E (ndarray) – Green-Lagrange strain tensor, shape: (3,3) |
---|---|
Returns: |
|
S_Sv_and_C_2d
(E)[source]¶Compute 2nd Piola Kirchhoff stress tensor in matrix form and voigt notation as well as material tangent modulus for 2D-Problems.
Parameters: | E (ndarray) – Green-Lagrange strain tensor, shape: (2,2) |
---|---|
Returns: |
|
Notes
The result is dependent on the the option plane stress or plane strain. Take care to choose the right option!
amfe.material.
KirchhoffMaterial
(E=210000000000.0, nu=0.3, rho=10000.0, plane_stress=True, thickness=1.0)[source]¶Bases: amfe.material.HyperelasticMaterial
Kirchhoff-Material that mimicks the linear elastic behavior.
The strain energy potential is
\(W\) = strain energy potential
\(\lambda\) = first Lamé constant: \(\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}\)
\(\mu\) = second Lamé constant: \(\mu = \frac{E}{2(1+\nu)}\)
\(\mathbf{E}\) = Green-Lagrange strain tensor
__init__
(E=210000000000.0, nu=0.3, rho=10000.0, plane_stress=True, thickness=1.0)[source]¶Parameters: |
|
---|---|
Returns: | |
Return type: | None |
amfe.material.
LinearMaterial
¶alias of KirchhoffMaterial
amfe.material.
NeoHookean
(mu, kappa, rho, plane_stress=False, thickness=1.0)[source]¶Bases: amfe.material.HyperelasticMaterial
Neo-Hookean hyperelastic material. It is the same material as the Mooney- Rivlin material with constant A01=0.
The Neo-Hookean material has the strain energy potential:
\(W\) = strain energy potential
\(J_1\) = first deviatoric strain invariant
\(J_3\) = third deviatoric strain invariant (determinant of elastic deformation gradient \(\mathbf{F}\))
\(\mu\) = initial shear modulus of the material
\(\kappa\) = bulk modulus (material incompressibility parameter)
amfe.material.
MooneyRivlin
(A10, A01, kappa, rho, plane_stress=False, thickness=1.0)[source]¶Bases: amfe.material.HyperelasticMaterial
Mooney-Rivlin hyperelastic material
The Mooney-Rivlin material has the strain energy potential:
\(W\) = strain energy potential
\(J_1\) = first deviatoric strain invariant
\(J_2\) = second deviatoric strain invariant
\(J_3\) = third deviatoric strain invariant (determinant of elastic deformation gradient \(\mathbf{F}\))
\(A_{10}, A_{01}\) = material constants characterizing the deviatoric deformation of the material
\(\kappa\) = bulk modulus (material incompressibility parameter)
__init__
(A10, A01, kappa, rho, plane_stress=False, thickness=1.0)[source]¶Parameters: |
|
---|---|
Returns: | |
Return type: | None |